Thursday, April 21, 2005

First clone of champion racehorse revealed

New Scientist (among others) recently discussed the work of Italian scientist Cesare Galli, whose cloned horse might begin to cause problems for the world of horse racing:



However, it is not just the sports community that is concerned about this matter:

"William Allen, head of the team at the Equine Research Unit in Newmarket, UK, accuses the government of capitulating to animal welfare groups. Animal Aid, a British-based animal welfare lobby group, opposes cloning of horses on the grounds that cloned embryos are often deformed or grossly over-sized, and so should not be created for what they argue is a leisure activity."

What would be a good reason to clone an animal or a human, if not sport? Perhaps one might suggest that medical research is the only justified context, but only out of necessity. It is not that we want to clone anything at all, but doing so would be incredibly valuable to our understanding of biology and, specifically, disease. Indeed, this is the kind of argument used to defend animal research more broadly. If there were alternative means to advance research, then they would be used. While I don't think this is an adequate position, it might explain why 'leisure' is not important enough.

This news can be traced back to an earlier creation of Galli's team, discussed here:

Galli, C., I. Lagutina, et al. (2003). "A cloned foal born to its dam twin." Nature 424: 635.

The Beam in Your Eye - LASIK

Here is an news article about the use of laser-eye surgery on athletes, in this case the golfer Tiger Woods. The basic premise of this piece is that laser eye surgery is also a performance enhancement for athletes, but it is not banned. why not?

"A week ago, Tiger Woods was celebrated for winning golf's biggest tournament, the Masters, with the help of superior vision he acquired through laser surgery." (link)

Here is an extract from an article I have written on this theme, which will be published in a Dutch book on gene doping (edited by Bernike Pasveer and Ivo Van Hilvoorde):

"To articulate the differences between the various uses of medical technology for sport, one can draw three categories of human modification: therapy, non-therapy, and enhancement. To understand the conceptual differences between these categories, it is useful to consider an example of medical intervention where these boundaries appear to be blurred. Laser eye surgery is a medical intervention intended to relieve the deterioration of eyesight. If this technique is applied to someone who has severe or even mild eyesight problems, then it can be considered therapeutic, since it will rectify any imperfection that might inhibit vision. In this capacity, it is tempting (and usual) to describe this as a ‘therapeutic’ medical intervention. It also matters that the definition is underwritten by the existence of a physician’s authority here. Yet, what are the defining characteristics of this ‘therapeutic’ guise? Is it important that the individual’s eyesight is being restored to a previous level of vision? If this were true, then we might wonder about the relevance of this conclusion. How would we feel if the intervention were applied to a person who was born without eyesight? The surgery would not return the individual to any previous state and, in that sense, s(he) would not be restored. In this case, the person would be restored only in the sense that there exists some species-typical state of function, where the treatment is characterised as therapeutic based on some typical functionality that a given species should possess. It could be said that humans have evolved to utilise the capacity for vision. This could also account for an individual who is born with partial vision – for whom we might also argue that restoration to perfect human vision is justified on account of a species-typical level of functioning to which we are comparing the said capability.

Each of these methods of intervention is generally considered acceptable. While there is some disagreement about the legitimacy of interventions that appear to suggest certain ways of being human are preferable over others, let us assume for the moment that eliminating dysfunction, however troubling we might find its definition, is ideologically sound. So, the interest to ensure deafness is corrected is defended on account of it offering an ‘open future’ (Feinberg, 1980), where this entails maximising the possibilities any individual might encounter (for further elaboration see Savulescu, 2001 and Shakespeare, 2001). These examples can be contrasted with an intervention that would raise the level of capability beyond both an individual and species-typical level of normal or even perfect function. So, if laser eye surgery leads to better than perfect vision, we might have quite different concerns and feelings about it.

Yet, it is also possible to think of circumstances where there is not much resistance to such super-human capacities. For example, there do not seem to be particularly strong moral convictions about the use of binoculars, telescopes, magnifying glasses, or even satellites and cameras, which radically re-define our capacity to see beyond our physical constraints. Yet, how would we feel about super-human vision? What if laser eye surgery could enable humans to enjoy the vision of, say, birds of prey. Alternatively, what if it enabled some additional functionality, such as a zoom capability? What should be our moral stance to such modifications and would such modifications be accepted in competitive sporting cultures? (FN: while not specifically tied to a sporting example, ‘super vision’ has been discussed in the context of sport recently (Alderson, 2001))

In the world of sport, the ethical reaction to such innovations would be clearly expressed by a certain moral community, which argues that the ‘natural’ athlete must prevail in sports contests. Where a modification places an athlete over and above their natural level of functioning or some species-typical level of functioning, this constitutes doping and is considered to be unacceptable because it provides an enhancement of the natural. On one level, it is possible to understand why anti-doping exists and why some would seek to justify such rules on the basis of naturalness. In some sports, an athlete with the capacity to ‘zoom’ their vision would be at a considerable advantage to an athlete who does not have such capacity (though in others it might actually be an inconvenience and a skill to be able to modify one’s eyesight to optimise performance). In one very important sense, a contest between two athletes would not be of much interest where one of them has super-vision, since the enhanced athlete will be more successful. However, from another perspective, sport intends to reveal the most capable human. An athlete born with some ‘zoom’ capability is, in one very important sense, the most capable human. Why should an athlete not receive their gold medal, if they are the most capable? These matters raise questions about what is just in sport and the legitimacy of enhanced capabilities."

Thursday, April 14, 2005

LifeWaves - Not Doping?

One of the questions at the Harvard symposium was about the ethical status of LifeWaves, the new technology that is designed to boost energy. There is no official WADA position on this one yet, but it is unlikely that it will be considered a method of doping. However ,it is performance enhancing and does offer a 'short-cut' to better performances. To that extent, one might argue (mistakenly) that is compromises the 'spirit of sport'. Here we have a further indication that there is a need for more joined-up thinking in the world of sport, about performance. In a paper I am due to have published in the Journal of Sport Sciences, I argue that it is necessary to ditch the anti-doping framework and replace it with a 'Performance Policy', which makes clear the connections between a range of technologies and how they challenge the ethical status of performance in sport.

Here are some details about the LifeWave patches from The California Aggie:

"The product consists of two patches, which the company claims will boost energy by 20 to 40 percent, and contains a vague list of ingredients known as 'orthomolecular compounds.' The NCAA and the U.S. Anti-Doping Agency tested the patches and found no illegal substances. The NCAA went a step further by announcing that the patches do not fall under the category of nutritional substances because nothing is ingested.

While LifeWave's patent is still pending, and no details can be given about
the composition of the patches, it is important to note the overall trend that is taking place in sports: an increase in cases of performance-enhancing products or supplements on the market. The fact that athletes at the collegiate and professional levels are looking for any advantages they can gain over their opponents is a distressing sign.

Gone are the days when athletes gained their advantage by just working harder
than their competitors. In today's era of sports, money and results are what matter and some athletes seem to be willing to accomplish their goals by any means necessary.

While very few collegiate athletes gain the notoriety that often accompanies
professional sports, it is important to note that Davis youths admire UCD athletes. Youngsters often emulate what they see performers doing and it is not far-fetched to believe kids will start using supplements in their adolescent years when given their favorite athletes as examples of a product's success.

LifeWave seems to be the latest in a string of performance-enhancing
products. With the rise of such products, athletes are often faced with the tough decision: losing the competitive edge or compromising their athletic integrity."

Of course, I totally reject the stance of this paper, but what's new!?

Monday, April 11, 2005

From BALCO to Bioethics, Harvard

Details of a meeting where I will give a presentation on gene doping:

Venue: Boston, USA: E.LaB Event Description

The Harvard Law School Ethics, Law & Biotechnology Society (E.LaB) in conjunction with the Harvard Committee on Sports and Entertainment Law (CSEL) & HL Central are proud to present “From BALCO to Bioethics: The Present and Future of Performance Enhancement in Sport.” The ongoing and highly publicized BALCO controversy has made the topic of performance enhancement among athletes one of substantial current interest and debate. While BALCO controls the headlines of today, and poses difficult questions for professional and amateur sports, we pause to speculate about what the future of performance enhancement in athletics may hold.

This panel discussion will feature Dr. Olivier Rabin, Director of Science for the World Anti-Doping Agency, Dr. Dan Brock, Director of the Division of Medical Ethics at Harvard Medical School, and Dr. Andy Miah, Lecturer in Media, Bioethics and Cyberculture at the University of Paisley, Scotland. The panel will be moderated by Dr. Gil Siegal, visiting professor and Medical Ethics Fellow at Harvard Medical School.



Please join us for an open dialogue about the present and future state of performance enhancement in sport.

Where: Harvard Law School, Langdell South Classroom

When: Monday April 11, 2005. 7-9pm.

Contact: Dan Vorhaus (dvorhaus@law.harvard.edu) for more information.

Thursday, April 07, 2005

Marathon Mice and PPARd

Press release from The Salk Institute. It is intriguing that any connection is made between this work and athletic performance. Clearly, the scientist's work is aimed at medical intervention and yet the prospects for athletes are implied through the communication. It is a further indication of how the application of pharmaceuticals to sports is sexy enough to spice up scientific research, but that most scientists are not really alarmed by how their work might be used for non-therapeutic purposes. Equally, perhaps Dr Evans is working with WADA to ensure they have tests for any future product that might arrive on the market. While I don't think that this would be enough to deal with the use of dangerous substances in sport, it would be an important development.

Altering steroid receptor genes creates fat burning muscles, resistance to weight gain, and lowered inflammation.


April 04, 2005 La Jalla, CA — The Salk Institute scientist who earlier discovered that enhancing the function of a single protein produced a mouse with an innate resistance to weight gain and the ability to run a mile without stopping, has found new evidence that this protein and a related protein play central roles in the body's complex journey to obesity and offer a new and specific metabolic approach to the treatment of obesity related disease such as Syndrome X (insulin resistance, hyperlipidemia and atherosclerosis).

Dr. Ronald M. Evans, a Howard Hughes Medical Investigator at Salk Institute's Gene Expression Laboratory, presented two new studies Monday, April 4, at Experimental Biology 2005 in the scientific sessions of the American Society for Biochemistry and Molecular Biology.

The studies focus on genes for two of the nuclear hormone receptors that control broad aspects of body physiology, including serving as molecular sensors for numerous fat soluble hormones, Vitamins A and D, and dietary lipids.

The first study focuses on the gene for PPARd, a master regulator that controls the ability of cells to burn fat. When the "delta switch" is turned on in adipose tissue, local metabolism is activated resulting in increased calorie burning. Increasing PPARd activity in muscle produces the "marathon mouse," characterized by super-ability for long distance running.

Marathon mice contain altered muscle composition, which doubles its physical endurance, enabling it to run an hour longer than a normal mouse. Marathon mice contain increased levels of slow twitch (type I) muscle fiber, which confers innate resistance to weight gain, even in the absence of exercise.

Additional work to be reported at Experimental Biology looks at another characteristic of PPARd: its role as a major regulator of inflammation. Coronary artery lesions or atherosclerosis are thought to be sites of inflammation.

Dr. Evans found that activation of PPARd suppresses the inflammatory response in the artery, dramatically slowing down lesion progression. Combining the results of this new study with the original "marathon mouse" findings suggests that PPARd drugs could be effective in controlling atherosclerosis by limiting inflammation and at the same time promoting improved physical performance.

Dr. Evans says he is very excited about the therapeutic possibilities related to activation of the PPARd gene. He believes athletes, especially marathon runners, naturally change their muscle fibers in the same way as seen in the genetically engineered mice, increasing levels of fat-burning muscle fibers and thus building a type of metabolic 'shield" that keeps them from gaining weight even when they are not exercising.

But athletes do it through long periods of intensive training, an approach unavailable to patients whose weight or medical problems prevent them from exercise. Dr. Evans believes activating the PPARd pathway with drugs (one such experimental drug already is in development to treat people with lipid metabolism) or genetic engineering would help enhance muscle strength, combat obesity, and protect against diabetes in these patients.

Link to site

Monday, April 04, 2005

American Academy of Pediatrics on Doping

Today, the AAP published a Policy Statement on the Use of Performance-Enhancing Substances.

It dismisses 'scare tactics' of health care professionals, suggesting that denying the performance-enhancing effects of substances to the young athlete is ineffective, as a means of prevention. The pediatrician must 'have an understanding of the incentives for use' and they define the problem as due to the drive for success in our contemporary society.

Of particular interest is that they identify 'limitations of current definitions' of doping, calling for a more restrictive definition that takes into account the possible different kinds of users. Specifically, they want a definitin that protects the most vulnerable kinds of users, in their case, a concern for minors.

They also dismiss the strategy of testing, as a method of prevention, identifying the need for education and evaluation of education programmes, which rarely happens.

Saturday, April 02, 2005

Blood spinning ethical?

WADA President Richard Pound recently commented on 'blood spinning', the technique of removing platelets from the blood (the cells that assist the process of healing) and reinjecting them into an injured part of the body to speed up the process of recovery.

The English football team Chelsea is using this practice, but it seems likely that they will for much longer. UK Sport has already raised questions about whether it should be considered a form of doping. Yet, it is precisely this kind of application that is tricky for WADA and for the medical profession. Certainly, it could be construed as the application of a medical intervention for a performance purpose, but this purpose is perhaps not obvious, nor can it be taken in isolation, since the technique promotes recovery.

Quoted in AFP: "It sounds like blood manipulation of some sort to me. But I would need to talk to our scientific department to get all the background," said Richard Pound."

Link to article in This Sporting Life